Monatshefte für Chemie 113, 191-196 (1982)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1982

Thioderivate der Quadratsäure Die Strukturen von 3,4-Dipyrrolidino-3-cyclobuten-1,2dithion und 2,4-Dipyrrolidino-3-thioxocyclobutenylium-1thiolat

Rainer Mattes*, Dirk Altmeppen, Günter Johann, Maria Schulte-Coerne und Harald Weber

Anorganisch-Chemisches Institut, Universität Münster, D-4400 Münster, Bundesrepublik Deutschland

(Eingegangen 3. April 1981. Angenommen 11. Juni 1981)

Thioderivatives of Squaric Acid. The Structures of 3,4-Dipyrrolidino-3-cyclobutene-1,2-dithione and 2,4-Dipyrrolidino-3-thioxo-cyclobutenylium-1-thiolate

The structures of the title compounds 4 and 5 have been determined by single crystal X-ray methods. Both molecules contain the approximately planar $C_4N_2S_2$ group with 10 π -electrons which are mainly delocalized. The mean C—C bond distances in the four membered ring system are 146.1 (4) for 4 and 143.8 (7) pm for 5, with small individual variations either. In both molecules the C—S and C—N bond distances are 165 and 132 pm, respectively. 4 has a crystallographic two fold axes, 5 an inversion center. The packing mode of both molecules is very similar.

(Keywords: Crystal structure; Dithiosquaric acid)

Einleitung

Gemischte, schwefelhaltige "Pseudooxokohlenstoffe" stellen eine, in jüngster Zeit aus mehreren Gründen vielbearbeitete Verbindungsklasse dar^{1,2}. 1,2- und 1,3-Dithioquadratsäurebisamide erwiesen sich hierbei als günstige Ausgangsstoffe³ für die Synthese voll oder partiell schwefelsubstituierter Quadratdianionen $[C_4O_{4-x}S_x]^{2-}$ (1). Bei der Darstellung von Kalium-1,2-Dithioquadratat (2 a) über 3,4-Bis(*N*-butylamino)-3-cyclobuten-1,2-dithion (3 a) beobachteten wir im IR-Spektrum von 3 a zwei sehr intensive Banden bei 1720 bzw. 1600 cm⁻¹. Sie müssen, da sie bei H/D-Substitution an den N-Atomen nicht ver-

13 Monatshefte für Chemie, Vol. 113/2

schwinden, Schwingungen des S—C—C—N-Gerüsts zugeordnet werden. Wegen einer Fehlordnung brachte eine Kristallstrukturanalyse von **3** a keine weiteren Aufschlüsse über die offensichtlich ungewöhnlichen Struktur- und Bindungsverhältnisse. Dagegen konnte von dem analogen tertiären Amid **4** die Struktur aufgeklärt werden, ebenso von der dazu isomeren Verbindung **5**, Derivaten der 1,2- bzw. 1,3-Dithioquadratsäure. Wir berichten hier über das Ergebnis dieser strukturellen Arbeiten, an anderer Stelle über komplexchemische und schwingungsspektroskopische Untersuchungen an 1,2- und 1,3-Quadratsäurebisamiden und ihren Dithio-analogen sowie über Normalkoordinatenanalysen an einigen Dianionen schwefelsubstituierter Quadratsäuren⁴.

Ergebnisse und Diskussion

4 kristallisiert orthorhombisch in der Raumgruppe Pben = D_{2h}^{14} mit $a = 1\,843,6\,(9), b = 876,2\,(4)$ und $c = 737,6\,(5)$ pm. Mit vier Molekülen pro Elementarzelle beträgt das Molvolumen 179,3 cm³. 5 kristallisiert in derselben Raumgruppe Pben mit den sehr ähnlichen Gitterkonstanten : $a = 1\,897,4\,(9), b = 880,1\,(5)$ und $c = 739,8\,(6)$ pm. Das Molvolumen ist nur wenig größer und beträgt bei $Z = 4\,185,9\,\text{cm}^3$.

Abb. 1 und 2 enthalten ORTEP-Plots der beiden Moleküle. Alle 8 Gerüstatome von 4 und 5 liegen in sehr guter Näherung in einer Ebene. Die größten Abweichungen betragen 8,2 (3) pm bei 4 bzw. 0,3 (4) pm bei 5. Eine genauere Analyse bei 4 zeigt, daß die Ebene durch S, C1, C1' und S' gegenüber der Ebene durch N, C2, C2' und N' um 4,7° verdreht ist. Auch die weiteren Molekülparameter weisen auf die weitgehende

Abb. 1. ORTEP-Plot von 3,4-Dipyrrolidino-3-cyclobuten-1,2-dithion (4)

Abb. 2. ORTEP-Plot von 2,4-Dipyrrolidino-3-thioxocyclobutenylium-1-thiolat (5)

Delokalisierung der π -Elektronendichte des 10π -Systems über diese 8 Zentren hin. Signifikante Unterschiede zwischen **4** und **5** in den Bindungsparametern bestehen offensichtlich nicht. So schwanken die Bindungsabstände im Vierring bei beiden Verbindungen jeweils nur wenig. Bei **4** beträgt der Mittelwert 146,1 (4) pm, die Einzelwerte liegen innerhalb des Dreifachen der Standardabweichung; dasselbe gilt auch für **5** bei einem mittleren C—C-Bindungsabstand von 143,8 (7) pm. Damit schließen sich die beiden Dithioquadratsäurebisamide den höher symmetrischen Ionen C₄S₄²⁻ (Lit.⁵) und C₄O₄²⁻ (Lit.⁶) an, bei denen die Mittelwerte der C—C-Abstände 145,7 (8) pm bzw. 144,8 (6) pm betragen, bei etwas größeren individuellen Schwankungsbreiten der Einzelwerte im Vergleich zu **4** und **5**.

Die C—S-Bindungslängen sind in **4** [164,5 (3) pm] und **5** [165,1 (7) pm] praktisch gleich lang und wenig kürzer als im $C_4S_4^{2-}$ [166,3 (8) pm], wo die Schwefelatome an Wasserstoffbrückenbindungen beteiligt sind⁵. Sie entsprechen damit genau dem im Kaliumdithioformiat KHCS₂ gefundenen Wert⁷ von 164,3 (5) pm und somit der erwarteten Bindungsordnung 1,5. Auch die C—N-Bindungslängen 131,3 (4) pm in **4** und 132,9 (9) pm in **5** zeigen diesen Bindungsgrad an. R. Mattes u. a.:

4 :	C1—C1′	145,2(5)	N—C3	149,2(5)
	C1C2	146,0(5)	NC6	148,4(4)
	C2-C2'	147,3(5)	C3—C4	151,1 (5)
	C1S	164,5(3)	C4-C5	152,2(6)
	C2N	131,3(4)	C5-C6	152,9(5)
5 :	C1C2	142,3(9)	N—C6	147,4(9)
	C1-C2'	145,3(10)	C3—C4	152,1(11)
	C1—N	132,9(9)	C4-C5	150,5(13)
	C2—S	165,2(7)	C5—C6	151,1(12)
	NC3	146,0(9)		

Tabelle 1. Bindungsabstände (in pm) in 4 und 5

Tabelle 2. Atomparameter von 4 (Standardabweichungen in Klammern)

Atom	$x \cdot 10^4$	$y \cdot 10^4$	$z \cdot 10^4$	<i>B*</i>
s	903(1)	2213(1)	1480(1)	2,38(4)
N	882(1)	-1836(3)	1734(4)	1,1(1)
С1	363(2)	818 (4)	2117(5)	1,7 (1)
C2	374(2)	-847(4)	2150(5)	1,5(1)
C3	1624(2)	-1334(4)	1195(6)	2,1(1)
С4	2000(2)	-2803(5)	678(6)	2,4(2)
C5	1648(2)	-3983(4)	1909 (6)	2,1(1)
С6	848 (2)	-3522(4)	1917 (6)	1,7(1)
	$x \cdot 10^3$	$y\cdot 10^3$	$z \cdot 10^3$	В
H1	317(2)	405(5)	220(6)	2,9(9)
H_2	157(2)	69(5)	522(7)	4,2(11)
H3	191(2)	298(4)	436(6)	2,2(8)
H4	247(2)	225(4)	91(5)	2,4(8)
H_{5}	317(2)	105(4)	321(5)	2,0(8)
H6	330(2)	-5(5)	142(6)	3,1(9)
H7	439(2)	121(4)	300(5)	1,7(7)
H8	441(2)	112(4)	80(5)	1,3(7)

 $B^{\,*}=(B_{11}\cdot B_{22}\cdot B_{33})^{1/3}.$

Sehr ähnliche Bindungsabstände fanden wir auch in Dithiocarbazinsäureestern, wo durchaus vergleichbare Bindungsverhältnisse herrschen^{8,9}. Der kürzere C—N-Bindungsabstand in 4 steht eventuell in Beziehung zum relativ langen Bindungsabstand der angrenzenden C—C-Bindung C2—C2'. Die C—N-Bindungsabstände sind viel kürzer als in Enaminen, wo Werte zwischen 138 und 142 pm beobachtet werden¹⁰.

Atom	$x \cdot 10^4$	$y \cdot 10^4$	$z \cdot 10^4$	<i>B</i> *
s	4124(1)	-2357(2)	542(3)	4,67(8)
Ν	4078(3)	1695(5)	486(9)	3,7(3)
C1	4599(4)	712(7)	208(10)	$^{3,4}(3)$
C2	4658(4)	-900(7)	213(9)	3,1(3)
C3	4140(4)	3344(8)	348(14)	$_{4,5(4)}$
C4	3375(4)	3853(9)	248(16)	5,5(5)
C5	2978(4)	2675(11)	1312(17)	6,0(6)
C6	3345(4)	1211 (9)	812 (13)	$_{4,4(4)}$
	$x \cdot 10^3$	$y \cdot 10^3$	$z \cdot 10^3$	B
H1	436(4)	359(8)	140(11)	7
H2	452(4)	391(7)	-2(11)	7
H3	321(4)	490(10)	106(10)	7
H4	347(4)	475(10)	108(10)	7
H5	255(4)	264(10)	121(10)	7
H6	299(4)	249(9)	-20(11)	7
H7	317 (3)	39 (8)	-5(10)	7
H8	334(3)	23(9)	179 (10)	7

 Tabelle 3. Atomparameter von 5 (Standardabweichungen in Klammern)

 $B^* = (B_{11} \cdot B_{22} \cdot B_{33})^{1/3}.$

In 4 befindet sich das N-Atom noch 4,9(3) pm oberhalb der Ebene durch die drei Kohlenstoffatome C2, C3 und C6, in 5 ist die Pyramidalität weiter abgeschwächt. Der Abstand zur Ebene beträgt 3,8(6) pm. Hierzu ist zu bemerken, daß Stickstoff in Pyrrolidinringen allerdings häufig eine abgeschwächte Pyramidalität aufweist¹⁰. Abstände und Winkel innerhalb der Pyrrolidinringe sind normal, die Ringe leicht gewellt, bei 5 wegen der leichten Beweglichkeit senkrecht zur Ringebene teilweise fehlgeordnet (s. u.).

Beide Moleküle liegen auf kristallographischen Symmetrieelementen: 4 auf einer zweizähligen Achse und 5 auf einem Inversionszentrum.

Dies führt zu einer sehr ähnlichen Packung: Die Moleküle liegen in einer "quasi" C-zentrierten Anordnung mit der Molekülebene nahezu parallel der *ab*-Ebene in *c*-Richtung mit einem Abstand $c/2 \approx 370$ pm so übereinander, daß die unterschiedlichen Substituenten der Vierringe fast ekliptisch übereinander stehen und in *c*-Richtung alternieren.

Experimenteller Teil

3,4-Bis(N-butylamino)-3-cyclobuten-1,2-dithion (3a), 3,4-Dipyrrolidino-3-cyclobuten-1,2-dithion (4) und 2,3-Dipyrrolidino-3-thioxocyclobutenylium-1-

thiolat (5) wurden nach Literaturangaben hergestellt^{11,12} und aus Methylenchlorid umkristallisiert.

Datensammlung, Lösung der Strukturen

Die Intensitäten von 1308 (4) bzw. 1221 (5) Reflexen wurden mittels eines Syntex P 2₁-Diffraktometers gemessen (Mo-K α , $\vartheta/2 \vartheta$ -scan, $2 \vartheta_{max} = 54^{\circ}$).

Kristallgrößen 4: $0,2 \times 0,2 \times 0,9$ mm; 5: $0,25 \times 0,1 \times 0,07$ mm. Die Lagen der Schwefelatome konnten den Patterson-Synthesen entnommen werden. Die Lokalisierung der C- und N-Atome erfolgte nach den üblichen Methoden. Bei 4 konnten die Positionen aller Wasserstoffatome aus einer Differenz-Fouriersynthese entnommen werden. Nach der Verfeinerung der Lageparameter aller Atome und der anisotropen Temperaturfaktoren der C, N und S-Atome in mehreren Zyklen unter Einbeziehung von 1017 Reflexen mit $F_0 \ge 3,92 \sigma(F_0)$ erhielten wir den abschließenden R-Wert 0,065 (R' = 0,075). Bei 5 erhielten die Kohlenstoffe C (4) und C (5) des Pyrrolidinrings während den Verfeinerungszyklen hohe anisotrope Temperaturfaktoren in c-Richtung. Die Wasserstoffatome waren in Differenz-Fouriersynthese zu erkennen. Sie wurden mit B = 7,0 in die Verfeinerung einbezogen. Unter Einschluß von 613 Reflexen mit $F_0 \ge 4 \cdot \sigma(F_0)$ betrug der abschließende R-Wert 0,074 (R' = 0,071). Tab. 2 und 3 enthalten die Orts- und die isotropen Temperaturparameter der beiden Strukturen.

3 a kristallisiert monoklin, ohne systematische Auslöschungen mit a = 832.4 (2), b = 682.0 (1) und c = 129.9 (1) pm, $\beta = 104.2$ (1)°, Z = 2. Die Reflexe mit h + k = 2n + 1 sind diffus; die meisten Kristalle waren verzwillingt.

Literatur

- ¹ Übersichtsartikel: Seitz G., Nachr. Chem. Tech. Lab. 28, 804 (1980).
- ² Übersichtsartikel: Schmidt A. H., Synthesis 1980, 961.
- ³ Seitz G., Mann K., Schmiedel R., Matusch R., Chem. Ber. 112, 990 (1979).
- ⁴ Mattes R., Altmeppen D., Johann G., Schulte-Coerne M., in Vorbereitung.
- ⁵ Allmann R., Debaerdemaeker T., Mann K., Matusch R., Schmiedel R., Seitz G., Chem. Ber. 109, 2208 (1976).
- ⁶ Macintyre W. M., Werkema M. S., J. Chem. Phys. 40, 3563 (1964).
- ⁷ Engler R., Kiel G., Gattow G., Z. anorg. allg. Chem. 404, 71 (1974).
- ⁸ Manotti Lanfredini A., Tiripicchio A., Tiripicchio Camellini M., Monaci A., Tarli F., J. Chem. Soc., Dalton Trans. 1977, 417.
- ⁹ Mattes R., Weber H., Scholten K., Chem. Ber. 113, 1981 (1980).
- ¹⁰ Brown K. L., Damm L., Dunitz J. D., Eschenmoser A., Hobi R., Kratky Ch., Helv. Chim. Acta **61**, 3108 (1978).
- ¹¹ Seitz G., Morck H., Mann K., Schmiedel R., Chem.-Ztg. 98, 459 (1974).
- ¹² Seitz G., Mann K., Schmiedel R., Chem. Ztg. 99, 332 (1975).